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Abstract. Using the axially-symmetric time-dependent Gross-Pitaevskii equation we study the phase co-
herence in a repulsive Bose-Einstein condensate (BEC) trapped by a harmonic and an one-dimensional
optical lattice potential to describe the experiment by Cataliotti et al. on atomic Josephson oscillation
[Science 293, 843 (2001)]. The phase coherence is maintained after the BEC is set into oscillation by a
small displacement of the magnetic trap along the optical lattice. The phase coherence in the presence
of oscillating neutral current across an array of Josephson junctions manifests in an interference pattern
formed upon free expansion of the BEC. The numerical response of the system to a large displacement of
the magnetic trap is a classical transition from a coherent superfluid to an insulator regime and a subse-
quent destruction of the interference pattern in agreement with the more recent experiment by Cataliotti
et al. [New J. Phys. 5, 71 (2003)].

PACS. 03.75.-b Matter waves – 03.75.Lm Tunneling, Josephson effect, Bose-Einstein condensates
in periodic potentials, solitons, vortices and topological excitations – 03.75.Kk Dynamic properties
of condensates; collective and hydrodynamic excitations, superfluid flow

1 Introduction

The observation of an oscillating Josephson current across
the boundaries of a one-dimensional array of potential
wells, usually generated by a standing-wave laser field
and commonly known as an optical lattice potential, in a
trapped cigar-shaped Bose-Einstein condensate (BEC) by
Cataliotti et al. [1] is a clear manifestation of macroscopic
quantum phase coherence. So far the Josephson effect has
been confirmed in superconductors with charged electrons
and in liquid helium [2].

The recent experimental observation of BEC in
trapped alkali-metal atoms [3] has offered new possibility
of the confirmation of Josephson effect in neutral quantum
fluids with an array of quasi one-dimensional Josephson
junctions not realizable in superconductors. The experi-
mental loading of a cigar-shaped BEC in both one- [4–6]
and three-dimensional [7] optical lattice potentials has al-
lowed the study of quantum phase effects on a macroscopic
scale such as interference of matter waves [8]. There have
been several theoretical studies on different aspects of a
BEC in a one- [9] as well as three-dimensional [10] optical
lattice potentials. The phase coherence between different
sites of a trapped BEC on an optical lattice has been es-
tablished in recent experiments [1,4,5,7] through the for-
mation of distinct interference pattern when the traps are
removed.
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Cataliotti et al. [1,11] have provided a quantitative
measurement of the formation and evolution of inter-
ference pattern upon free expansion of a cigar-shaped
trapped BEC of repulsive Rb atoms on an optical lattice
and harmonic potentials after the removal of the com-
bined traps. The phase coherence in a BEC trapped in
a standing-wave optical-lattice is responsible for the for-
mation of a distinct interference pattern upon free expan-
sion as observed in several recent experiments [1,4,5,7,11].
Cataliotti et al. [1] also continued their investigation to a
BEC oscillating on the optical lattice via quantum tunnel-
ing and found that the phase coherence between different
sites is maintained during oscillation initiated by a sudden
shift of the magnetic trap along the optical axis.

The phase-coherent BEC on the optical lattice is a
quantum superfluid [7] and the atoms in it move freely
from one optical site to another by quantum tunneling.
However, the classical movement is prohibited through the
high optical potential traps. It has been demonstrated in
a recent experiment by Greiner et al. [7] that, as the op-
tical potential traps are made much too higher, the quan-
tum tunneling of atoms from one optical site to another
is stopped resulting in a loss of superfluidity and phase
coherence in the BEC. Consequently, no interference pat-
tern is formed upon free expansion of such a BEC which
is termed a Mott insulator state. This phenomenon repre-
sents a quantum phase transition (with energy nonconser-
vation in the tunneling process) and cannot be accounted
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for in a classical mean-field model based on the Gross-
Pitaevskii (GP) equation [12].

Following a suggestion by Smerzi et al. [13], more re-
cently Cataliotti et al. [14] have demonstrated in a novel
experiment the loss of phase coherence and superfluid-
ity in a BEC trapped in a optical-lattice and harmonic
potentials when the center of the harmonic potential is
suddenly displaced along the optical lattice through a dis-
tance larger than a critical value. Then a modulational
instability takes place in the BEC and it cannot reorga-
nize itself quickly enough and the phase coherence and
superfluidity of the BEC are destroyed. The resulting mo-
tion of the condensate is not oscillatory in nature. The loss
of phase coherence is manifested in the destruction of the
interference pattern upon free expansion. However, for dis-
placements smaller than the critical distance the BEC can
reorganize itself and the phase coherence and superfluidity
are maintained [1,14]. Recently, a new classical mechanism
for the loss of superfluidity of a BEC arising from a non-
linear modulation of the scattering length has been sug-
gested [15]. Distinct from the quantum phase transition
observed by Greiner et al. [7], these modulational insta-
bilities responsible for the destruction of phase coherence
are classical in nature and can be described [13,14] by the
mean-field model. Hence in the present paper we present
a mean-field description of the experiments by Cataliotti
et al. [1,14] to see how well and how far it can describe the
observed phenomena. Specifically, we consider the numer-
ical solution of the axially-symmetric GP equation [12] in
an optical and a harmonic trap.

Cataliotti et al. [1,14] provided a theoretical account of
their study using the tight-binding approximation for the
full wave function in the presence of the periodic optical
potential wells. Also, there has been a preliminary attempt
to explain some features of this experiment using one-
dimensional mean-field models [11,16]. In reference [16]
a dynamical solution of one-dimensional GP equation was
used; whereas in reference [11] an one-dimensional model
of interference was developed using superposition of ana-
lytical matter waves, which is reasonable in the absence of
nonlinear atomic interaction. Although, the tight-binding
approximation and these one-dimensional models could be
reasonable for the study of some aspects of the experiment
of Cataliotti et al. [1,14], here we compare the results with
the complete solution of the three-dimensional mean-field
Hamiltonian via the nonlinear GP equation [12].

In Section 2 we present the mean-field model based on
the axially-symmetric time-dependent nonlinear GP equa-
tion. In Section 3 we present the numerical results and
finally, in Section 4 we present the conclusions.

2 Mean-field model

The time-dependent BEC wave function Ψ(r; t) at posi-
tion r and time t is described by the following mean-field
nonlinear GP equation [12]

[
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∂t
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2m
+ V (r) + gN |Ψ(r; t)|2

]
Ψ(r; t) = 0, (1)

where m is the mass and N the number of atoms in the
condensate, g = 4π�

2a/m the strength of interatomic in-
teraction, with a the atomic scattering length. In the pres-
ence of the combined axially-symmetric and optical lattice
traps V (r) = 1

2mω
2(ρ2 + ν2y2) + Vopt where ω is the an-

gular frequency of the harmonic trap in the radial direc-
tion ρ, νω that in the axial direction y, with ν the aspect
ratio, and Vopt is the optical lattice potential introduced
later. The normalization condition is

∫
dr|Ψ(r; t)|2 = 1.

In the axially-symmetric configuration, the wave func-
tion can be written as Ψ(r, t) = ψ(ρ, y, t), where 0 ≤
ρ < ∞ is the radial variable and −∞ < y < ∞ is the
axial variable. Now transforming to dimensionless vari-
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ϕ(ρ̂, ŷ; τ) = 0, (2)

where n = Na/l. In terms of the one-dimensional proba-
bility P (y, t) ≡ 2π

∫ ∞
0 dρ̂|ϕ(ρ̂, ŷ, τ)|2/ρ̂, the normalization

of the wave function is given by
∫ ∞
−∞ dŷP (y, t) = 1. The

probability P (y, t) is useful in the study of the present
problem under the action of the optical lattice potential,
specially in the investigation of the formation and evolu-
tion of the interference pattern after the removal of the
trapping potentials.

In the experiment of Cataliotti et al. [1] with repulsive
87Rb atoms in the hyperfine state F = 1,mF = −1, the
axial and radial trap frequencies were νω = 2π × 9 Hz
and ω = 2π × 92 Hz, respectively, with ν = 9/92. The
optical potential created with the standing-wave laser
field of wavelength λ = 795 nm is given by Vopt =
V0ER cos2(kLz), with ER = �

2k2
L/(2m), kL = 2π/λ, and

V0 (< 12) the strength. For the massm = 1.441×10−25 kg
of 87Rb the harmonic oscillator length l =

√
�/(mω) =

1.126 µm and the present dimensionless length unit cor-
responds to l/

√
2 = 0.796 µm. The present dimensionless

time unit corresponds to ω−1 = 1/(2π × 92) s = 1.73 ms.
Although we perform the calculation in dimensionless
units using equation (2), we present the results in actual
physical units using these conversion factors consistent
with the experiment by Cataliotti et al. [1]. In terms of the
dimensionless laser wave length λ0 =

√
2λ/l � 1, the di-

mensionless standing-wave energy parameter ER/(�ω) =
4π2/λ2

0. Hence in dimensionless unit Vopt of equation (2) is

Vopt

�ω
= V0

4π2

λ2
0

[
cos2

(
2π
λ0
ŷ

)]
. (3)

We solve equation (2) numerically using a split-step time-
iteration method with the Crank-Nicholson discretiza-
tion scheme described recently [18]. The time iteration
is started with the known harmonic oscillator solution of
equation (2) with n = 0:

ϕ(ρ̂, ŷ) = [ν/(8π3)]1/4ρ̂e−(ρ̂2+νŷ2)/4
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Fig. 1. P (y, t) vs. y and t for the ground-state BEC with
n = 10 and V0 = 6 for 0 < t < 100 ms and (a) −30 µm < y <
30 µm and (b) −6 µm < y < 6 µm. The optical potential for
−6 µm < y < 6 µm is shown in (c). The harmonic oscillator
potential is negligible on this scale.

with chemical potential µ̄ = (1 + ν/2) [17]. For a typi-
cal cigar-shaped condensate with ν � 0.1 [1], µ̄ � 1 is
much smaller than the typical depth of the optical poten-
tial wells ER/(�ω) = 4π2/λ2

0 � 40 so that µ̄ � ER/(�ω)
and the passage of condensate atoms from one well to
other can only proceed through quantum tunneling. The
nonlinearity as well as the optical lattice potential param-
eter V0 are slowly increased by equal amounts in 10 000n
steps of time iteration until the desired value of nonlin-
earity and optical lattice potentials are attained. Then,
without changing any parameter, the solution so obtained
is iterated 50 000 times so that a stable solution is obtained
independent of the initial input and time and space steps.
The solution then corresponds to the bound BEC under
the joint action of the harmonic and optical traps.

3 Numerical results

First we consider the BEC formed on the optical lattice
for a specific nonlinearity. In the present study we take
nonlinearity n = 10 and optical lattice strength V0 = 6
except in Figure 5 where we use a variable V0. We con-
sider the ground-state wave function in the combined har-
monic and optical lattice potentials. The one-dimensional
pattern in the axial y-direction is most easily illustrated
from a consideration of the probability P (y, t) at different
times. In Figure 1a we plot the frontal view of P (y, t) for
0 < t < 100 ms and −30 µm < y < 30 µm. In this inter-
val of y, there are 150 wells of the optical potential and
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Fig. 2. P (y, t) vs. y and t for the BEC of figure 1 after the
removal of combined traps at t = 0 for a lattice defined by
ρ ≤ 25 µm and (a) −320 µm < y < 320 µm and (b) −160 µm <
y < 160 µm.

as many maxima and minima in P (y, t), which cannot be
visualized clearly in Figure 1a. In the actual experiment
200 wells were typically populated, which corresponds to a
larger condensate than considered in this numerical sim-
ulation. For the limitation in computer processing time
we had to stick to a smaller condensate. In Figure 1b we
show a close-up of Figure 1a for −6 µm < y < 6 µm
containing 30 wells. The corresponding optical potential
is shown in Figure 1c, which clearly shows the 30 wells.
From Figure 1b one can count 30 maxima and 30 minima
in probability P (y, t).

As the present calculation is performed with the full
wave function without approximation, phase coherence
among different wells of the optical lattice is automati-
cally guaranteed. As a result when the condensate is re-
leased from the combined trap, a matter-wave interference
pattern is formed in few milliseconds. The atom cloud re-
leased from one lattice site expand, and overlap and inter-
fere with atom clouds from neighboring sites to form the
robust interference pattern due to phase coherence. No in-
terference pattern can be formed without phase coherence.
The pattern consists of a central peak at y = 0 and two
symmetrically spaced peaks, each containing about 10%
of total number of atoms, moving apart from the central
peak [1,11].

The simulation of the formation of the interference pat-
tern is performed by loading the preformed condensate of
Figure 1 on two lattices with ρ ≤ 25 µm and (a) 320 µm
≥ y ≥ −320 µm, and (b) 160 µm ≥ y ≥ −160 µm which
will permit the study of the evolution of the interference
pattern on a large interval of space and time. The inter-
ference pattern is formed by suddenly removing the com-
bined traps at time t = 0. The time evolution of the system
is best illustrated via P (y, t) and we plot in Figures 2a and
2b P (y, t) vs. y and t for lattices (a) and (b), respectively.
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The dynamics is symmetric about y = 0 and only P (y, t)
for positive y is plotted in Figure 2a. In these plots we can
clearly see the central condensate and the moving inter-
ference peak(s). The peaks spread unobservably slowly as
they propagate, even after reflection from the boundary
or after crossing each other. The phase coherence between
the components of BEC at different sites of optical lattice
is responsible for the generation of the interference pat-
tern with very little or practically no spreading. Without
the initial phase coherence over a large number of lattice
sites, a repulsive condensate in the absence of a trap will
disappear in few milliseconds [19]. Each of the moving in-
terference peaks is similar to atom laser [4,20] which can
be used in the scattering of two coherent BECs and other
purposes.

We have also examined the wave function ϕ(ρ̂, ŷ, t) at
different times (not reported here). We find that there is
virtually no spreading of the wave function in the axial y
direction during few hundred milliseconds. The phase co-
herence in the axial direction due to the optical lattice is
responsible for the localization of the peaks.

Next we consider an oscillating BEC in the combined
harmonic and optical traps. If we suddenly displace the
magnetic trap along the lattice axis by a small distance
after the formation of the BEC in the combined trap, the
condensate will be out of equilibrium and start to oscil-
late. As the height of the potential-well barriers on the
optical lattice is much larger than the energy of the sys-
tem, the atoms in the condensate will move by tunnel-
ing through the potential barriers. This fluctuating trans-
fer of Rb atoms across the potential barriers is due to
Josephson effect in a neutral quantum liquid. The ex-
periment of Cataliotti et al. [1,11] demonstrates that the
phase coherence between different wells of the condensate
is maintained during this mass transfer and a matter-wave
interference pattern with three peaks is formed after the
removal of the joint trap. The peaks of the expanded con-
densate oscillate in phase, thus showing that the quantum
mechanical phase coherence is maintained over the entire
condensate. They studied this problem experimentally in
some detail by varying the time of oscillation of the BEC
(hold time) before removing the combined trap [1].

To see if the present simulation can represent the es-
sential features of the phase coherence of the oscillating
BEC, we load the GP equation with the BEC of the com-
bined harmonic oscillator and optical traps on a lattice
defined by 200 µm ≥ y ≥ −200 µm and ρ ≤ 25 µm and
suddenly displace the harmonic trap along the optical axis
by 25 µm. The BEC starts to oscillate and we allow the os-
cillation to evolve through a certain interval of time, called
hold time, before the removal of the combined traps. The
interference pattern is observed after some time of free
expansion and the positions of the interference peaks are
noted. In Figure 3 we plot the one-dimensional probability
P (y, t) vs. y and t after an initial evolution of the oscilla-
tion during 35 ms and observe the interference pattern for
160 ms. In this case, unlike in Figures 2, the large central
peak does not stay at rest and the sizes and positions of
the two smaller peaks are not symmetrical around y = 0.
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Fig. 3. P (y, t) vs. y and t for an oscillating BEC on optical
lattice after a displacement of the magnetic trap through 25 µm
along the optical axis and upon the removal of the combined
traps at t = 35 ms (hold time).
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Fig. 4. Center of mass positions of the three interference peaks
of the expanded condensate after 20 ms of free expansion vs.
hold time of the oscillating BEC. The magnetic trap is dis-
placed through a distance of 25 µm. The + symbols denote
the results of simulation which are joined by full lines to show
the correlated oscillation of the three peaks.

The clear formation of the interference pattern with very
little spreading even after reflection at the boundaries and
its propagation for more than 160 ms is noted in Figure 3
which confirms the phase coherence.

To study the phase coherence in detail we plot in Fig-
ure 4 the positions of the expanded interference peaks after
20 ms of free expansion for different hold times of oscil-
lation in the displaced harmonic potential. We find that
the interference peaks oscillate in phase showing the phase
coherence in the oscillating BEC. Similar oscillation was
also observed in the experiment of Cataliotti et al. [1].
From Figure 4 we find that the period of this oscillation
is about 170 ms corresponding to a frequency of 5.9 Hz,
which is very close to the experimental result exhibited
in Figure 3 of reference [1]. To make a more complete
comparison with Figure 3 of reference [1] we calculated
the frequency of atomic current in the array of Josephson
junctions for different V0 and the results are shown in
Figure 5 where we plot the present frequencies as well as
those of the experiment of Cataliotti et al. [1] and of their
tight-binding calculation. From Figure 5 we see that the
complete solution of the GP equation has led to results
in agreement with the experiment of Cataliotti et al. The
agreement of the present calculation in Figure 5 performed
with a smaller condensate with experiment demonstrates
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Fig. 5. The frequency of the atomic current in the array of
Josephson junctions as a function of optical lattice strength:
(•) with error bar − experiment of Cataliotti et al. [1]; (�) tight
binding calculation [1]; (�) present calculation.

that the frequency of atomic current is mostly determined
by the strength of the optical lattice strength and is rea-
sonably independent of the size of the condensate.

Finally, we consider the destruction of superfluidity
in the condensate when the center of the magnetic trap
is displaced along the optical lattice by a distance larger
than the critical distance and the BEC is allowed to stay
in this displaced trap for an interval of time (hold time). In
this case the BEC does not execute an oscillatory motion
but its center moves very slowly towards the new center
of the magnetic trap. The destruction of superfluidity and
phase coherence for a larger hold time in the displaced
trap manifests in the disappearance of the interference
pattern upon free expansion as noted in experiment [14].
As in that experiment, we consider a displacement of the
magnetic trap through 120 µm and allow the condensate
to freely expand for 27.8 ms after different hold times in
the optical and displaced magnetic traps.

For numerical simulation we load the BEC of Figure 1
on a lattice with ρ ≤ 25 µm and 200 µm ≥ y ≥ −200 µm
and study the its evolution after an initial displacement
of 120 µm of the magnetic trap for hold times 0, 35 ms,
and 70 ms. As in the experiment no oscillatory motion of
the BEC is noted in the displaced trap. The corresponding
probability densities are plotted in Figures 6a, 6b, and 6c,
respectively. For hold times 0 and 35 ms prominent inter-
ference pattern is formed upon free expansion as we can
see in Figures 6a and 6b. In these cases three separate
pieces of interference patterns corresponding to three dis-
tinct trails can be identified. However, as the hold time in
the displaced trap increases the maxima of the interfer-
ence pattern mixes up and finally for a hold time of 70 ms
the interference pattern is completely destroyed as we find
in Figure 6c in agreement with the experiment [14].

As the BEC is allowed to evolve for a substantial inter-
val of time after a large displacement of the magnetic trap
along the optical axis a dynamical instability of classical
nature sets in and the system can not evolve maintain-
ing the phase coherence [13,14]. This has been explicitly
demonstrated in the present simulation which results in
the destruction of the interference pattern.
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Fig. 6. P (y, t) vs. y and t for a BEC on optical lattice after
a sudden displacement of the magnetic trap through 120 µm
along the optical axis and upon the removal of the combined
traps after hold times (a) 0, (b) 35 ms, and (c) 70 ms. The
time evolution is stopped upon 27.8 ms of free expansion after
the removal of the combined traps.

4 Conclusion

In conclusion, to understand theoretically the experiments
by Cataliotti et al. [1,14], we have studied in detail the
phase coherence along a cigar-shaped condensate loaded
in a combined axially-symmetric harmonic trap and op-
tical lattice trap using the solution of the mean-field GP
equation. Upon removal of the combined traps, the forma-
tion of an interference pattern clearly demonstrates the
phase coherence over a very large number of optical lat-
tice sites. Each of the moving interference peaks formed of
coherent matter wave is similar to a atom laser observed
experimentally [4,20]. The phase coherence along the op-
tical lattice axis of the condensate is maintained even if
the initial BEC is set into oscillation by suddenly shifting
the harmonic trap along the optical axis through a small
distance and keeping the BEC in the displaced trap for
a certain hold time. This is clearly demonstrated by the
noted correlated oscillation of the condensate peaks after
free expansion for different hold times. The present mean-
field model provides a proper account of the frequency
of atomic current in the array of Josephson junctions in
agreement with experiment [1].
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However, if the initial displacement of the harmonic
trap along the optical axis is larger than a critical value
and the BEC is maintained in the displaced trap for a cer-
tain time, the phase coherence is destroyed. Consequently,
after release from the combined trap no interference pat-
tern is formed in agreement with experiment [14].

The work was supported in part by the CNPq and FAPESP
of Brazil.
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